If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5.7t-4.9t^2=0
a = -4.9; b = 5.7; c = 0;
Δ = b2-4ac
Δ = 5.72-4·(-4.9)·0
Δ = 32.49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5.7)-\sqrt{32.49}}{2*-4.9}=\frac{-5.7-\sqrt{32.49}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5.7)+\sqrt{32.49}}{2*-4.9}=\frac{-5.7+\sqrt{32.49}}{-9.8} $
| 20.5=15.5+(-3.6x)+18x | | 5d+2)+3d=58 | | 5.7t+4.9t^2=0 | | x+(x*0,0199)-5067,88=0 | | -3x+-14-5x=70 | | 5=s+17 | | 5x+20=10x-40* | | 8x+5=13-5x | | 14x+3=-25x+9 | | 14x+18=9x | | 7x-37+2x+1=90 | | 5n+9n=28 | | 5(x+1)=90-4(10-x) | | 6x-5=(-11)+2x | | 21-4=(2x-3) | | 5z=15=45 | | 5/8=x/28 | | 43m+37=53m+24 | | 60+24x=14x-6 | | x2+12x+2=0 | | b+12=5b | | 10x40=140 | | 7(1+3v)=112 | | 16-(1-5x)-4x-29=-14+x | | 9-3x=7+2x | | -3(x+7)²=0 | | 36x-4=180 | | 0.30(75.2)+0.70x=70 | | 0.30(75.2)+0.70x=80 | | 4+5x=4-7x | | 13k-7/4-2=2k | | 2x-10-12x-3=12-8x |